
QuantReplay REST API

QuantReplay REST API

Table of Contents

Introduction. 4

Scope. 4

General . 5

REST Logic . 5

REST Requests. 5

REST Usage . 6

Base URL . 6

Request Methods . 6

HTTP GET . 7

HTTP POST . 7

HTTP PUT . 8

HTTP DELETE . 9

Data Format . 10

Request Headers . 10

Request Body . 11

Response Body. 11

Strings . 12

Numbers . 12

Date/Time . 12

Random Order Generation . 13

Distribution of Actions . 13

Distribution of Price. 16

Distribution of Quantity . 18

Special Market Events . 19

Data Source Playback . 19

Format Specific Configuration. 20

CSV Files. 20

Databases. 22

QuantReplay REST API

© QuantReplay 1 of 103

Basic Single Level Order Book. 22

Multiple Level Order Book . 25

Market Phases . 27

Open Phase. 28

Closed Phase . 28

Phase Halt. 29

Persisted State . 29

File Format . 30

Data verification . 34

Administrative Settings. 47

General Settings . 47

Get Settings. 47

Update Settings . 48

Venues . 50

Market Phases Sub-List . 52

Get Single Venue . 54

Get Multiple Venues . 56

Add Venue . 57

Update Venue. 59

Delete Single Venue . 60

Listings. 60

Get Single Listing . 65

Get Multiple Listings . 67

Add Listing . 69

Update Listing . 70

Data Sources . 72

Column Mapping Sub-List . 74

Get Single Data Source . 77

Get Multiple Data Sources . 78

Add Data Sources . 79

Update Data Sources . 81

Price Seeds . 82

Get Single Price Seed . 84

QuantReplay REST API

© QuantReplay 2 of 103

Get Multiple Price Seeds . 85

Add Price Seeds . 86

Update Price Seeds . 87

Delete Price Seeds. 88

Sync Price Seeds . 89

Administrative Commands . 90

System Status . 90

Get System Status . 90

Venue Status . 91

Get Single Venue Status. 91

Get Multiple Venue Status . 92

Order Generation . 93

Start/Stop Order Generation . 93

Status of Order Generation . 94

Market Phase Halt . 95

Halt Market Phase . 95

Resume Market Phase . 97

Persisted State . 98

Store Market State for Single Venue . 98

Recover Market State for Single Venue. 100

QuantReplay REST API

© QuantReplay 3 of 103

Introduction

This reference document provides details of the QuantReplay Market Simulator

Representational State Transfer (REST) API.

Scope

This document provides technical-level details of using the administrative

functions through the REST API of the QuantReplay Market Simulator, for

modifying administrative settings and sending administrative requests to

market simulator instances.

QuantReplay REST API

© QuantReplay 4 of 103

General

REST Logic

Market Simulator instances interact. So, if a person sends a request about

Venue status from one Market Simulator, the system can receive it in another

Market Simulator, process it and return a response. Final response to this

person will be provided from the initial Market Simulator from which the

person sent a request.

It is possible to check the status of the Market Simulator instance. All Market

Simulators have REST patterns - types of requests that they can accept and

process. If Market Simulator receives REST request that it cannot process, it

returns an error - e.g.: method is unavailable.

The commands to Check Status, Stop/Start order Generation, check its status,

etc. do not influence the Database, they influence only the work of the current

simulator instance.

REST Requests

You can go straight to the Database and make the necessary changes for the

Market Simulator instance, but it requires access to the Database. As an option,

it is possible to send REST request from outside.

A client (e.g.: a Web interface) can make a request to the REST engine of one of

the simulator instances - REST call to the REST port of one of the simulators -

with the request to make some changes on the LSE instance, for example. It is

possible to send status request, change the status,stop/start orders generation,

etc. Market Simulator makes the requested changes in the Database. There is

NO UM Messaging, Market Simulator instances communicate over REST.

QuantReplay REST API

© QuantReplay 5 of 103

REST Usage

All that we have in the Database should be accessible through REST. It is

possible to compare the Database and GET REST request.

Through REST it is possible to:

• see some specific listing / venue / data sources

• see all listings / venues / price seed

• see venue / multiple venues status

• see order generation status

• start / stop order generation

• update some listing / venue / price seed / data sources /settings

• add listing / venue / price seed / data sources / settings

• send order

Market Simulator gets data from the Database at its start, as a result, Market

Simulator provides only current data to REST.



Changes made directly to the database may require a restart of

the simulator process in order to make these changes visible

through the REST API.

Base URL

Requests to the Market Simulator REST API are unsecured, since the Market

Simulator deals only with non-production simulated market data and trades in

testing environments.

Request Methods

QuantReplay REST API

© QuantReplay 6 of 103

HTTP GET

Market Simulators use the GET request to retrieve information about the

specified system resource, and can return the following response codes:

Status Code Meaning

200 OK Request was successful and the

response body contains the requested

resource.

404 NOT FOUND The requested URI or resource

identifier is unknown.

412 PRECONDITION FAILED The value of the X-API-Version

optional header mismatches with the

simulator major version.

500 SERVER ERROR Request could not be processed due to

an internal server error.

503 SERVICE UNAVAILABLE System is temporarily unable to

process the request. Please wait and

then try again.

HTTP POST

Market Simulators use the POST request to add one or more new resources to

the system or make complex requests, and can return the following response

codes:

Status Code Meaning

201 CREATED Request was successful, we added the

new resource(s) and the response body

contains the validated form of the

resource(s) or the response to a

complex request.

QuantReplay REST API

© QuantReplay 7 of 103

Status Code Meaning

400 BAD REQUEST The request failed validation, see

response body for details.

403 FORBIDDEN User is not allowed to execute

requested action, see response body

for details.

404 NOT FOUND The requested URI is unknown.

405 METHOD NOT ALLOWED POST is not valid for the specified

resource.

409 CONFLICT Request could not be processed due to

an inconsistent server state, see

response body for details.

412 PRECONDITION FAILED The value of the X-API-Version

optional header mismatches with the

simulator major version.

500 SERVER ERROR Request could not be processed due to

an internal server error.

502 BAD GATEWAY Request could not be forwarded to

destination simulator instance, see

response body for details.

503 SERVICE UNAVAILABLE System is temporarily unable to

process the request. Please wait and

then try again.

HTTP PUT

Market Simulators use the PUT request to update one or more existing

resources in the system, and can return the following response codes:

QuantReplay REST API

© QuantReplay 8 of 103

Status Code Meaning

200 OK Request was successful, we updated

the resource(s) and the response body

contains the validated form of the

resource(s).

204 NO CONTENT Request was successful, we updated

the resource(s) and the response body

is empty.

400 BAD REQUEST The request failed validation, see

response body for details.

404 NOT FOUND The requested URI or resource

identifier is unknown.

405 METHOD NOT ALLOWED PUT is not valid for the specified

resource.

412 PRECONDITION FAILED The value of the X-API-Version

optional header mismatches with the

simulator major version.

500 SERVER ERROR Request could not be processed due to

an internal server error.

503 SERVICE UNAVAILABLE System is temporarily unable to

process the request. Please wait and

then try again.

HTTP DELETE

Market Simulators use the DELETE request to remove one or more existing

resources from the system, and can return the following response codes:

QuantReplay REST API

© QuantReplay 9 of 103

Status Code Meaning

204 NO CONTENT Request was successful, we deleted the

resource(s) and the response body is

empty.

404 NOT FOUND The requested URI or resource

identifier is unknown.

405 METHOD NOT ALLOWED DELETE is not valid for the specified

resource.

412 PRECONDITION FAILED The value of the X-API-Version

optional header mismatches with the

simulator major version.

500 SERVER ERROR Request could not be processed due to

an internal server error.

503 SERVICE UNAVAILABLE System is temporarily unable to

process the request. Please wait and

then try again.

Data Format

Request Headers

QuantReplay REST API

© QuantReplay 10 of 103

HTTP Header Value type Required Meaning

X-API-Version string No Defines the REST

API version. If it

mismatches with

the simulator

major version, the

response is sent

with status code

412

PRECONDITION

FAILED.

The equality of

versions is only

checked if the

request contains

the header.

Request Body

In the case of requests that contain a body (generally POST and PUT requests)

the body must be sent in JSON format, using the following request header:

Content-Type: application/json

All property names in the request body must be double quoted. See below for

further details on the format of specific types of request body values.

Response Body

In the case of responses that contain a body (generally GET, POST, and PUT

responses) the body will be sent in JSON format. All property names in the

response body will be double quoted. See below for further details on the

QuantReplay REST API

© QuantReplay 11 of 103

format of specific types of response body values.

Strings

Any string values sent as part of a JSON request or response must be wrapped

in double quotes. In the case where an indication of "no value" is required, a

null property value may be specified.

Example

{
 "myStringProperty":"myStringValue",
 "myEmptyStringProperty":null
}

Numbers

Any numerical fields (Integer or Float) sent as part of a JSON request or

response must not be wrapped in double quotes. In the case of Float values, a

period (".") must be used as the decimal separator, regardless of a user’s

regional settings. In the case where an indication of "no value" is required, a

null property value may be specified.

Example

{
 "myIntegerProperty":123,
 "myFloatProperty":123.456,
 "myEmptyNumberProperty":null
}

Date/Time

All time stamps sent to or returned from Market Simulators must be expressed

in UTC.

Time stamps with second granularity are expressed using the format: yyyy-

MM-ddTHH:mm:ss

QuantReplay REST API

© QuantReplay 12 of 103

Example

2015-09-08T15:32:09

Time stamps with milli-second granularity are expressed using the format:

yyyy-MM-ddTHH:mm:ss.SSS

Example

2015-09-08T15:32:09.119

Random Order Generation

Some notes on understanding how random order generation works in the

market simulator.

Distribution of Actions

The simulator uses a separate pseudo random number generator per listing so

that as each random action is determined based on probability distributions, as

described below in greater detail, each subsequent action determined from the

output of each pseudo random number generator for each listing is

independent of any underlying threading model for managing the load across

all active listings. Each of these separate pseudo random number generators is

seeded by default with its own genuine random number provided by API calls

specific to the platform where the simulator is running, so that the resulting

sequence of actions will be different each time the simulator is started.

The frequency of random generation of orders is almost entirely dependent on

Listings → randomOrdersRate. The primary setting controls the number of

actions taken by the random order generator per second, including the

resulting actions taken on resting orders (placing them, and amending or

canceling them), as well as the frequency of matching orders resulting in

trades. Some other settings, such as Venues → randomPartyCount and Listings

QuantReplay REST API

© QuantReplay 13 of 103

→ randomDepthLevels would also have some effect, but not as significant as

randomOrdersRate.

The value entered for randomOrdersRate determines the frequency with

which a timer will trigger in the market simulator to do an action. The specific

action taken is randomly chosen each time by a statistically correct, evenly

distributed random number generator.

There is a hard-coded 1/3 probability of the simulator choosing to "do nothing"

as an action, therefore the effective applied frequency of choosing a random

action (including "do nothing") is:

Actual Effective Random Action Frequency = (Configured randomOrdersRate

value * 3) / 2

Of actual actions taken, there is a hard-coded probability distribution of:

40% probability of resting bid action

40% probability of resting ask action

10% probability of aggressive buy

10% probability of aggressive sell

That means that 80% of the time we should have an action on a resting order in

the book, and 20% of the time we should have an action of an aggressive order

that may match against a resting order in the book. Note however, aggressive

orders will not be sent against an empty side of a book with no corresponding

resting orders.

Venues → randomPartyCount value determines the number of counter parties

that will be used to determine which party each order action is generated

from, and each party is chosen using a simple round-robin choice of parties for

each subsequent random action.

For example, if a value of randomPartyCount = 10 is configured, party #1 will

QuantReplay REST API

© QuantReplay 14 of 103

be used for the first random action, party #2 will be used for the next action,

and so on until we get to party #10 and then return back to party #1 and keep

repeating.

Coming back to the probability of order actions, if the random action chosen is

a resting bid (40% probability) or ask (40% probability) action, we then have an

additional random choice of actions determined by the following logic and

hard-coded probability distribution:

If a bid does not exist for a resting bid action (or an ask does not exist for a

resting ask action) for the current counter party (as determined by the Venues

→ randomPartyCount setting described above), then simply place the new bid

(or place the new ask). Otherwise, if there is already an existing resting bid (or

ask) for the current counter party, use the following probability distribution:

45% probability of amend quantity of existing order

45% probability of amend price of existing order

10% probability of cancel existing order

So in summary, there is an 80% probability each second of performing an

action on a resting order (either placing a new order for the party, otherwise

90% probability of amending, or 10% probability of canceling), and a 20%

probability each second of performing an aggressive action (matching orders

in the book, resulting in trades).

Coming back to our example of randomOrdersRate = 10, this should result in

an average of about 8 resting order actions per second (new if no existing

order for the party, otherwise about 7 amends, and about 1 cancel) and an

average of about 2 matching order trades per second.

While randomOrdersRate is the primary setting determining frequency of

actions taken by the simulator, another setting Listings → randomDepthLevels

is worth noting. This determines the number of allowed depth levels in the

book, such that if the random chosen action is to place a new resting bid or ask

QuantReplay REST API

© QuantReplay 15 of 103

for the current counter party, it will not be done if it would mean exceeding

this configured maximum number of levels in the book. Combined with the

probability distribution of quantity and price as described in the following

sections, this maximum number of depth levels could also limit the number of

times there is an existing order in the book for a given counter party to

perform amend or cancel actions on, and could also limit the range of quantity

and price levels available for aggressive orders to match against. The deeper

the book is allowed to grow, the closer the simulator will be able to apply the

probabilities described above, without synthetically blocking an action due to a

limit in the number of depth levels in the book.

Distribution of Price

The price used on randomly generated orders is largely determined by the

configuration of Listings → randomOrdersSpread to determine the minimum

bid/ask spread to maintain, and Listings → randomTickRange to determine the

range which prices are distributed across multiple depth levels of the order

book.

The setting Listings → randomOrdersSpread is expressed as an absolute

decimal price value, with an enforced minimum of the value of Listings →

tickSize configured for the same listing. This effectively becomes the smallest

spread allowed in the order book determined by generation of random orders.

If the spread becomes less than this value (or crossed) it is likely due to other

actions, such as historical data playback or manually entered orders.

Starting with an empty book, the initial value to consider when generating a

new random price will be taken from a starting "seed" price as stored in a table

of starting prices per instrument (across all listings of that instrument). After

the book has resting orders, the initial value is taken from the best prices in the

book. In both cases, the initial value is adjusted to incorporate the configured

spread as described above. Specifically, prices for new resting Bid orders and

aggressive Sell orders use an initial starting value of the best Ask price in the

order book subtracting the configured spread, or the best Bid price directly if

QuantReplay REST API

© QuantReplay 16 of 103

there are no resting Ask orders, or failing that the configured Bid price directly

from the table of starting prices (or Mid price if there is no Bid). Respectively,

prices for new resting Ask orders and aggressive Buy orders use an initial

starting value of the best Bid price in the order book adding the configured

spread, or the best Ask price directly if there are no resting Bid orders, or

failing that the configured Bid price directly from the table of starting prices

(or Mid price if there is no Ask).

Once this initial price value is determined, the setting Listings →

randomTickRange is used to determine the number of ticks by which to vary

the price of random orders relative to the starting value. New resting Bid order

prices and aggressive Sell order prices are randomly chosen as a number of

ticks below the initial value, and new resting Ask order prices and new

aggressive Buy order prices are randomly chosen as a number of ticks above

the initial value. The frequency distribution of random prices across this range

of prices is exponentially weighted by a factor of 1.05 ^ (randomTickRange - 1)

so that more orders are placed near the top of the book than lower down.

The following diagram represents this distribution:

QuantReplay REST API

© QuantReplay 17 of 103

The final price of a new random order is chosen as a number of ticks away

from the initial price value, weighted by the frequency distribution as

described above. In this way, the final price is a multiple of the configured ticks

on the listing (Listings → PriceTickSize), rounded to the configured precision of

the listing (Listings → PricePrecision).

Distribution of Quantity

The quantity used on randomly generated orders is determined by the

configuration of minimum and maximum values of either quantity or amount

per each listing.

If the setting Listings → randomAmtMinimum is not set, then the value Listings

→ randomQtyMinimum is used as the lowest possible quantity value (or

instead qtyMinimum if that is larger than randomQtyMinimum or

randomQtyMinimum is not set). If the setting Listings → randomAmtMinimum

is set, then this value divided by the determined random price (per the section

above) is used as the lowest possible quantity value (or instead Listings →

randomQtyMinimum if that is set and is larger than the minimum quantity

QuantReplay REST API

© QuantReplay 18 of 103

determined from randomAmtMinimum, or again instead qtyMinimum if that

is larger than the minimum quantity determined from randomAmtMinimum

and randomQtyMinimum if it is set). This lowest possible quantity value is then

rounded up to the nearest multiple of the setting Listings → qtyMultiple.

Likewise, if the setting Listings → randomAmtMaximum is not set, then the

value Listings → randomQtyMaximum is used as the highest possible quantity

value (or instead qtyMaximum if that is smaller than randomQtyMaximum or

randomQtyMaximum is not set). If the setting Listings →

randomAmtMaximum is set, then this value divided by the determined

random price (per the section above) is used as the highest possible quantity

value (or instead Listings → randomQtyMaximum if that is set and is smaller

than the maximum quantity determined from randomAmtMaximum, or again

instead qtyMaximum if that is smaller than the maximum quantity determined

from randomAmtMaximum and randomQtyMaximum if it is set). This highest

possible quantity value is then rounded down to the nearest multiple of the

setting Listings → qtyMultiple.

If the settings Listings → randomAggQtyMinimum / randomAggQtyMaximum /

randomAggAmtMinimum / randomAggAmtMaximum are set, then these values

are used instead for aggressive orders, and the other corresponding settings

described above are used only for passive orders.

Once the lowest and highest possible quantity values are determined, the

quantity of random order actions is generated as an integer between these

values, rounded to the nearest multiple of the setting Listings → qtyMultiple.

Special Market Events

Documentation TBC (controlling high volatility, spikes, market impact, etc.).

Data Source Playback

The market simulator can read data from an external data source and play it

QuantReplay REST API

© QuantReplay 19 of 103

back through the main order book of the simulator to allow clients to consume

this as tradable market data. For instance, a data source with bid/ask market

data is turned into orders that are sent into the simulator’s matching engine,

which then results in published market data and the ability for other clients to

send orders into the same matching engine’s order book.

The market simulator currently supports either CSV file format or databases

such as PostgreSQL and TimescaleDB. The simulator can read market data in

the form of multiple bid/ask order book levels.

See this section for specific details of configuring data sources.

Format Specific Configuration

CSV Files

The connection string for a CSV file is the full absolute local file path to the file

containing data. For example: “/path/to/my/file.csv”

Following usual CSV standards:

• Numeric values are expected to be specified with a decimal point for

fractional amounts. e.g. 3 or 3.45

• Strings can be specified without double quotes (") if they have no spaces,

otherwise if spaces are present the string should be surrounded by double

quotes ("). e.g. abc or "a b c"

• If a string is surrounded by double quotes and it contains a double quote, it

must be escaped by using 2 double quotes. e.g. "a b "" c" for the string a b " c

• Either a Unix or Windows style end of line can be used for each row.

An additional point is that currently all Date/Time strings are expected to be

specified in the format: "YYYY-MM-DD HH:MM:SS.MMM"

The following data source properties can be configured to indicate aspects

specific to the format of a CSV file:

QuantReplay REST API

© QuantReplay 20 of 103

• textDelimeter - delimiter used to separate values ("," by default if not

specified)

• textHeaderRow - 1-based row index of where header row is located (0

indicates no header row)

• textDataRow - 1-based row index of where the first row of data is located.

Cannot be 0, and must be greater than textHeaderRow

Specifically for CSV format files, and only when textHeaderRow is 0 or not

specified, the column mapping properties of the data source can be used to

map columns by index number. The columnTo property of the column

mapping can be used to specify a 1-based column number to map to in the data

source. In this case, if no column mappings are indicated, the following default

order of columns is expected:

ReceivedTimeStamp, MessageTimeStamp, Instrument, BidParty,
BidQuantity, BidPrice, AskPrice, AskQuantity, AskParty

Also in this case, if some columns are mapped but not others, any unmapped

column is assumed to be at the position as indicated above by the default order

of columns.

The following examples show sample generic CSV formats using these data

source properties:

textDelimiter absent / textHeaderRow=1 / textDataRow=2

col1,col2,col3,col4,col5,col6,col7
"2019-03-07 15:00:00.243",value1,"value 2","value "" 3",1,2,3
"2019-03-07 15:01:05.876",value4,"value 5","value "" 6",4,5,6

textDelimiter=; / textHeaderRow=2 / textDataRow=4

col1,col2,col3,col4,col5,col6,col7

"2019-03-07 15:00:00.243";value1;"value 2";"value "" 3";1;2;3
"2019-03-07 15:01:05.876";value4;"value 5";"value "" 6";4;5;6

QuantReplay REST API

© QuantReplay 21 of 103

textDelimiter absent / textHeaderRow=0 / textDataRow=1

"2019-03-07 15:00:00.243",value1,"value 2","value "" 3",1,2,3
"2019-03-07 15:01:05.876",value4,"value 5","value "" 6",4,5,6

Databases

The connection string for a database is the URL containing the IP, port,

authentication details, and database name required to connect to the database

instance. For example:

“postgresql://myuser:mypassword@10.0.1.1:5432/mydatabasename”

The following data source properties can be configured to indicate aspects

specific to the format of a database:

• tableName - name of table containing data in the database

Basic Single Level Order Book

For a simple data source where each row contains only a single level bid/ask

order book, the simulator starts reading the single level of depth from the first

row of the datasource, and then proceeds to read each subsequent row after

that. The trigger for playing back the content of a data source follows the same

logic as the configuration used to indicate whether or not to generate random

orders. The orderOnStartup property of a venue determines whether to play

back any configured data sources when the simulator starts, and the genstart

REST API can be used to start play back on demand. If the

randomOrdersEnabled property of a listing is true, then both random order

generation and playback from a configured data source will begin and

continue to run simultaneously.

In processing each data source row, the simulator compares the current state

of the matching engine for the given listing of each row, and generates a series

of order actions (new orders, amends, cancels) to modify the current state of

the matching engine to change to a state that matches the values from the

QuantReplay REST API

© QuantReplay 22 of 103

current data source row being processed. The following logic is applied to

derive order actions from each row of a data source:

• Any existing orders from counter parties that do not match the party of the

data source row being processed are canceled.

• Any existing orders for the same party as the data source row being

processed without a corresponding bid or ask entry in the data source are

canceled.

• Any existing orders for the same party as the data source row being

processed with a corresponding bid or ask entry in the data source are

amended to the same price and quantity as the corresponding bid or ask

entry in the data source.

• Any bid or ask entries in the data source without a corresponding existing

order for the same party results in a new order with the properties of that

bid or ask entry in the data source.

This will result in all of the usual market data updates generated when any

order actions are sent into the matching engine. Each row of the datasource is

played back into the matching engine at a rate that corresponds with the

ReceivedTimeStamp property of the row. The first row will be played back

immediately, the second row will be played back with a delay of the difference

between the ReceivedTimeStamp of the second and first rows, and so on. This

continues until the last row of the data source, at which point if the repeat

property of the venue is false, then play back will stop, otherwise if it is true

the simulator will continue to play back the content of the data source

restarting from the first row.

The order actions derived from each data source row processed by the

simulator use the bid and ask party, quantity, and price values to update the

state of the matching engine. While ReceivedTimeStamp is used only to

determine when the order actions are played back into the matching engine,

the MessageTimeStamp is used to set the timestamp property (generally set by

the sender) of each order action. The MessageTimeStamp property value used

QuantReplay REST API

© QuantReplay 23 of 103

to set the timestamp on each order action is adjusted with the difference

between the ReceivedTimeStamp of the first row and the current time of day at

that moment.

For example, if the following 2 first rows from a data source were being played

back at a current time of day of 14:30:00.500 :

ReceivedTimeStamp,MessageTimeStamp,...
"2019-03-07 15:00:00.243","2019-03-07 15:00:00.115",...
"2019-03-07 15:01:05.876","2019-03-07 15:01:05.203",...

…then the resulting order actions would be played back at the following times,

with the following timestamps:

@ 14:30:00.500 : timestamp = 14:30:00.372

@ 14:31:06.133 : timestamp = 14:31:05.460



Note that the simulator will play back order actions with at least

the same delay between values of ReceivedTimeStamp for each

row, though the actual delay may be longer if the simulator is

unable to play back the order actions for each row for too small

of a specified delay.

For database format and CSV file format with a non-zero textHeaderRow value,

the column mapping properties of the data source can be used to map columns

by name. The columnFrom property of the column mapping is used to select

the internal simulator field that will be mapped from, and the columnTo

property indicates the data source column that the simulator field will be

mapped to. In this case, any unmapped columns are assumed to use the same

values as available for the columnFrom property as the column name in the

data source.

See the section Market Simulator REST API | Column Mapping Sub List for

descriptions of all possible fields that can be mapped from a data source as

configured using the columnFrom property of a data source column mapping.

QuantReplay REST API

© QuantReplay 24 of 103

If any bid or ask level is missing a price or quantity value, that bid or ask entry

is considered to be empty and removed from the state of the matching engine.

If the party value for a bid or ask level is missing, a default value of “CP1” is

used for data sources with a single level bid/ask order book.

The following shows a sample data source list of single level bid/ask order

books, which can be interpreted either as a CSV or database format.

ReceivedTimeStamp,MessageTimeStamp,Instrument,BidParty,BidQuantity,
BidPrice,AskPrice,AskQuantity,AskParty
"2019-03-07 15:00:00.243","2019-03-07
15:00:00.115","VOD.L",CP1,10,133.50,134.85,15,CP2
"2019-03-07 15:01:05.876","2019-03-07
15:01:05.203","VOD.L",CP1,10,133.50,135.83,15,CP2
"2019-03-07 15:01:14.667","2019-03-07
15:01:13.998","VOD.L",CP1,8,133.50,135.70,18,CP2

Multiple Level Order Book

For a more complex data source where each row contains a bid/ask order book

with more than one level, the simulator processes each row much like as

described above for a single level order book, but changing the state of the

matching engine to have the multiple bid/ask levels indicated by each row of

the data source.

The column mapping properties of the data source can be used to map to

multiple simulator fields corresponding to the columnFrom values of BidParty,

BidQuantity, BidPrice, AskPrice, AskQuantity, AskParty. For each of these

columnFrom values, a 1-based index can be appended to indicate which bid or

ask level that value should be applied to, for example BidParty1 for the first bid

level, BidParty2 for the second bid level, and so on. In this case, the columnTo

property still works the same way, indicating either the name or (for a CSV file

format when textHeaderRow is 0 or not specified) the index position of the

data source column to map to. If no column mapping is indicated for one of the

columnFrom values listed above, then either for a database format or CSV file

format with a non-zero value for textHeaderRow, it is expected that column

QuantReplay REST API

© QuantReplay 25 of 103

names are specified in the data source, and if that unmapped column name

(from the list of BidParty, BidQuantity, BidPrice, AskPrice, AskQuantity,

AskParty) is not found directly as one of the columns of the data source, then

that same column name is expected to be present but with a 1-based index

appended to indicate which bid or ask level that column of values should be

applied to. For instance, if BidPrice is not specified as a mapped column of the

data source, and BidPrice as a column name is not present in the data source,

then it is expected that BidPrice1, BidPrice2, etc will be specified as columns in

the data source for each level.

If the party value for a bid or ask level is missing for data sources with multiple

bid/ask levels, a default value of “CP#” is used, where # is the index for each

level (e.g. level 1 would use CP1, etc).

Note that the # character can also be appended to either the columnFrom or

columnTo data source column mappings to indicate that all available depth

levels can be mapped. For instance a column mapping of

columnFrom=BidPrice# and columnTo=bidpx# indicates that a simulator field

of BidPrice for level 1 of bids would be mapped to a column name in the data

source of bidpx1, and a simulator field of BidPrice for level 2 of bids would be

mapped to a column name in the data source of bidpx2, and so on.

It is also possible to limit the number of depth levels processed from a data

source using the maxDepthLevels property of a venue. This value can

optionally be used to indicate the maximum number of bid/ask levels that will

be processed by the simulator in the data source, after which the remaining

levels will be ignored and treated as empty.

The following shows a sample data source list of bid/ask order books with

multiple (5) levels, some with empty entries, which can be interpreted either as

a CSV or database format.

ReceivedTimeStamp,MessageTimeStamp,Instrument,BidParty1,BidQuantity
1,BidPrice1,BidParty2,BidQuantity2,BidPrice2,BidParty3,BidQuantity3
,BidPrice3,BidParty4,BidQuantity4,BidPrice4,BidParty5,BidQuantity5,
BidPrice5,AskPrice1,AskQuantity1,AskParty1,AskPrice2,AskQuantity2,A

QuantReplay REST API

© QuantReplay 26 of 103

skParty2,AskPrice3,AskQuantity3,AskParty3,AskPrice4,AskQuantity4,As
kParty4,AskPrice5,AskQuantity5,AskParty5
2021-04-08 12:34:00.003,2021-04-08
12:34:00.003,VOW,CP1,500000.0,1.18811,CP2,1000000.0,1.1881,CP3,3000
000.0,1.18807,CP4,5000000.0,1.18805,,,,1.18818,1500000.0,CP6,1.1882
3,3000000.0,CP7,1.18826,5000000.0,CP8,,,,,,
2021-04-08 12:34:10.044,2021-04-08
12:34:10.044,VOW,CP1,1000000.0,1.18812,,,,,,,,,,,,,1.18819,1000000.
0,CP6,,,,,,,,,,,,
2021-04-08 12:34:20.048,2021-04-08
12:34:20.048,VOW,CP1,3000000.0,1.18812,CP2,1000000.0,1.18811,CP3,50
0000.0,1.1881,,,,,,,1.18815,2000000.0,CP6,1.18816,1000000.0,CP7,1.1
8817,1000000.0,CP8,,,,,,

Market Phases

The market simulator can be configured to operate in the context of specific

market phases following a configured schedule. Each phase has distinct rules

of operation regarding what type of trading is allowed and how orders are

matched.

If any market phases are scheduled according to the startTime and endTime

properties of phases configured on a venue, each of the scheduled market

phases will become the active market phase between these start and end times

during that day, interepreting these times according to the timeZone property

configured on the venue. Any phase with the same end time as the start time of

the next phase (including 00:00 and 24:00 which are considered as

overlapping) will result in the immediate transition from the first phase to the

next phase at this common time. If there is a gap in scheduled market phases,

and no market phase is scheduled to be currently active, then the default active

market phase is the Open phase. Any phase scheduled with a start time after its

own end time is considered invalid and ignored.

For any scheduled market phases with overlapping start and end times, the

phase scheduled to start within the start and end times of another phase will

take priority as the active market phase, and then when it ends, revert to the

initial market phase, unless that phase is also now ended. In general, if

multiple phases have overlapping start and end times, each new phase with

QuantReplay REST API

© QuantReplay 27 of 103

the most recent start time will be considered active at its start time, then at its

end time the active phase should revert to the phase with the most recent start

time that has not yet reached its end time.

Some examples of this include:

• If phase1 has a start time and end time between the start time and end time

of phase2, then phase1 is active between phase2 being active (phase2

follows phase1 which then reverts back to phase2).

• If phase1 has a start time between the start time and end time of phase2,

and phase1 has an end time greater than the end time of phase2, then

phase1 would be active for the last part of phase2 and continue past it

(phase2 follows phase1 which then becomes the Open phase if no other

phase is scheduled).

See this section for specific details of configuring market phases on venues.

The following indicates details on the operation of each specific phase while it

is active.

Open Phase

While the Open market phase is active, all normal trading activity is allowed.

Closed Phase

While the Closed market phase is active, all trading activity is blocked. It is still

possible for market sessions to be connected and remain connected, and it is

still possible to subscribe to market data updates and remain subscribed to

market data updates, but all order action requests will be rejected, such as

requests for new orders, amending orders, or canceling orders. In addition, at

the moment a Closed phase starts, any existing orders in the matching engine

for any listing will be terminated and rejected if they have a Time In Force of

Day or Time In Force of GoodTillDate with an expiration of the current day.

QuantReplay REST API

© QuantReplay 28 of 103

Phase Halt

The halting of a phase is not technically a market phase itself, but rather the

temporary halt of the currently active market phase. In this state, any order

action request sent to the simulator will be rejected.

If a phase halt is explicitly configured as part of the phase schedule, it would

only halt phases other than Closed. A Closed phase is always Closed and cannot

be halted. A scheduled halt starting before a scheduled Closed phase would

become a Closed phase, though a scheduled halt starting before or during a

scheduled Closed phase that ends after the end of the Closed phase would then

become a halt of the active phase following the Closed phase.

If a phase halt is triggered on demand through a halt request, it will halt the

currently active market phase. However, if the request to halt a phase is made

before a scheduled halt, the start of the scheduled halt would override the

requested halt, such that the end of the scheduled halt would once again

resume the currently active market phase.

For either a scheduled or requested halt of the currently active market phase,

the property allowCancels in the scheduled halt or in the halt request indicates

whether the halted phase would reject only new order and amend order

requests, or also reject order cancel requests. In this way, if allowCancels is

true, a halted phase may still process order cancel requests.

A currently halted phase can also be removed on demand through a resume

request to reactive the otherwise currently active scheduled market phase.

Persisted State

The market simulator may store and recover:

• The order book;

• The last trade;

QuantReplay REST API

© QuantReplay 29 of 103

• Low and high trade prices.

The settings persistenceEnabled and persistenceFilePath are used to configure

the feature - if persistenceEnabled is true:

• The market simulator recovers its state from the file placed at

persistenceFilePath on startup or by request Market Simulator REST API |

Recover Market State For Single Venue ;

• The market simulator stores its state on clean shutdown or by request

Market Simulator REST API | Store Market State For Single Venue.

If the file’s content is correct JSON and the instrument is found, the order book,

last trade, and low and high trade prices will be removed during the recovery.

File Format

The data is stored in the JSON file.

For instance, the venue “LSE” contains two listings “AAPL” and “VOW”:

• “AAPL” has no orders in the order book, no last trade, and low and high

prices.

• “VOW” has the last trade, low and high prices. Its order book contains one

buy order and two sell orders.

{
 "venue_id": "LSE",
 "instruments": [
 {
 "instrument": {
 "symbol": "AAPL",
 "price_currency": "USD",
 "base_currency": null,
 "security_exchange": "XLOM",
 "party_id": null,
 "cusip": null,
 "sedol": "B0YQ5W0",
 "isin": "US0378331005",
 "ric": null,
 "exchange_id": null,

QuantReplay REST API

© QuantReplay 30 of 103

 "bloomberg_id": null,
 "price_tick": 0.1,
 "quantity_tick": 1.0,
 "min_quantity": 1.0,
 "max_quantity": 10000.0,
 "party_role": null,
 "security_type": "CommonStock"
 },
 "last_trade": null,
 "info": null,
 "order_book": {
 "buy_orders": [],
 "sell_orders": []
 }
 },
 {
 "instrument": {
 "symbol": "VOW",
 "price_currency": "EUR",
 "base_currency": null,
 "security_exchange": "XLOM",
 "party_id": null,
 "cusip": null,
 "sedol": "0308908",
 "isin": "DE0007664005",
 "ric": null,
 "exchange_id": null,
 "bloomberg_id": null,
 "price_tick": 0.00001,
 "quantity_tick": 1.0,
 "min_quantity": 1.0,
 "max_quantity": 1000000000.0,
 "party_role": null,
 "security_type": "CommonStock"
 },
 "last_trade": {
 "buyer": "CP3",
 "seller": "CP6",
 "trade_price": 1.18815,
 "traded_quantity": 290.0,
 "aggressor_side": "Buy",
 "trade_time": "2025-05-16 14:42:49.958327",
 "market_phase": {
 "trading_phase": "Open",
 "trading_status": "Resume"
 }
 },
 "info": {
 "low_price": 1.18812,
 "high_price": 1.18818
 },

QuantReplay REST API

© QuantReplay 31 of 103

 "order_book": {
 "buy_orders": [
 {
 "client_instrument_descriptor": {
 "security_id": "DE0007664005",
 "symbol": "VOW",
 "currency": "EUR",
 "security_exchange": "XLOM",
 "parties": [],
 "requester_instrument_id": 1,
 "security_type": "CommonStock",
 "security_id_source": "ISIN"
 },
 "client_session": {
 "type": "Generator",
 "fix_session": null
 },
 "client_order_id": "SIM-
1747406520164373224",
 "order_parties": [
 {
 "identifier": {
 "party_id": "CP1",
 "source": "Proprietary"
 },
 "role": "ExecutingFirm"
 }
],
 "expire_time": null,
 "expire_date": null,
 "short_sale_exemption_reason": null,
 "time_in_force": "Day",
 "order_id": 250516144244000013,
 "order_time": "2025-05-19 14:42:48.614534",
 "side": "Buy",
 "order_status": "Modified",
 "order_price": 0.38799,
 "total_quantity": 3000000.0,
 "cum_executed_quantity": 1000535.0
 }
],
 "sell_orders": [
 {
 "client_instrument_descriptor": {
 "security_id": "DE0007664005",
 "symbol": "VOW",
 "currency": "EUR",
 "security_exchange": "XLOM",
 "parties": [],
 "requester_instrument_id": 1,
 "security_type": "CommonStock",

QuantReplay REST API

© QuantReplay 32 of 103

 "security_id_source": "ISIN"
 },
 "client_session": {
 "type": "Fix",
 "fix_session": {
 "begin_string": "FIXT.1.1",
 "sender_comp_id": "SENDER",
 "target_comp_id": "TARGET",
 "client_sub_id": null
 }
 },
 "client_order_id": "SIM-
1747406520164373237",
 "order_parties": [
 {
 "identifier": {
 "party_id": "CP5",
 "source": "Proprietary"
 },
 "role": "ExecutingFirm"
 }
],
 "expire_time": null,
 "expire_date": null,
 "short_sale_exemption_reason": null,
 "time_in_force": "Day",
 "order_id": 250516144250000026,
 "order_time": "2025-05-16 14:42:51.522018",
 "side": "Sell",
 "order_status": "Modified",
 "order_price": 1.188,
 "total_quantity": 408.0,
 "cum_executed_quantity": 0.0
 },
 {
 "client_instrument_descriptor": {
 "security_id": "DE0007664005",
 "symbol": "VOW",
 "currency": "EUR",
 "security_exchange": "XLOM",
 "parties": [],
 "requester_instrument_id": 1,
 "security_type": "CommonStock",
 "security_id_source": "ISIN"
 },
 "client_session": {
 "type": "Generator",
 "fix_session": null
 },
 "client_order_id": "SIM-
1747406520164373236",

QuantReplay REST API

© QuantReplay 33 of 103

 "order_parties": [
 {
 "identifier": {
 "party_id": "CP8",
 "source": "Proprietary"
 },
 "role": "ExecutingFirm"
 }
],
 "expire_time": null,
 "expire_date": null,
 "short_sale_exemption_reason": null,
 "time_in_force": "Day",
 "order_id": 250516144250000025,
 "order_time": "2025-05-16 14:42:50.627388",
 "side": "Sell",
 "order_status": "Modified",
 "order_price": 1.18812,
 "total_quantity": 606.0,
 "cum_executed_quantity": 0.0
 }
]
 }
 }
]
}

Data verification

On storing, the market simulator does the following verifications:

Verification Actions if fail

1 persistenceEnabled is true Output log info message:

"The market state was not stored:

the persistence is disabled."

Stop storing.

QuantReplay REST API

© QuantReplay 34 of 103

Verification Actions if fail

2 persistenceFilePath is not empty Output log error message:

"The market state was not stored:

the persistence file path is empty."

Stop storing.

3 The directory of the persistence file

exists

Output log error message:

"The market state was not stored:

the persistence file path directory

does not exist."

Stop storing.

4 The file can be saved Output log error message:

"The market state was not stored: an

error when unable to open file."

Stop storing.

On recovery, the market simulator does the following verifications:

Verification Actions if fail

1 persistenceEnabled is true Output log info message:

"The market state was not

recovered: the persistence is

disabled."

Stop the recovery

QuantReplay REST API

© QuantReplay 35 of 103

Verification Actions if fail

2 persistenceFilePath is not empty Output log info message:

"The market state was not

recovered: the persistence file path

is empty."

Stop the recovery.

3 persistenceFilePath contains the

path to the existing file

Output log info message:

"The market state was not

recovered: the persistence file path

is unreachable."

Stop the recovery.

4 The file was successfully opened Output log error message:

"The market state was not

recovered: an error when unable to

open file."

Stop the recovery.

5 The file content was successfully

parsed

Output log error message:

“The market state was not

recovered: the persistence file is

malformed: {}", where “{}” is a

placeholder for details.

Stop the recovery.

QuantReplay REST API

© QuantReplay 36 of 103

Verification Actions if fail

6 The instrument is found and

enabled.

The equality of the following fields is

used to check that the parsed

instrument is present and enabled

in the venue:

• symbol

• price_currency

• base_currency

• security_exchange

• party_id

• cusip

• sedol

• isin

• ric

• exhange_id

• bloomberg_id

• party_role

• security_type

If the instrument is found, all orders

from its order book will be

cancelled.

Output log warning message:

"The instrument was not found, its

recovery was ignored: {}", where

“{}” is a placeholder for the

instrument.

Move on to the next instrument.

QuantReplay REST API

© QuantReplay 37 of 103

Verification Actions if fail

7 If the market phase is Closed, the

order’s time_in_force is not “Day”.

Output log error message:

“validation failed with 'the order is

already expired because its

time_in_force is Day and the market

phase is Closed' error, order was not

recovered: {}”, where “{}” is a

placeholder for the order.

Move on to the following order.

8 The order’s

client_instrument_descriptor

corresponds to the Instrument using

the Instrument Resolution

algorithm.

Output one of the log error

messages:

• "validation failed with

'client_instrument_descriptor is

malformed' error, order was not

recovered: {}"

• "validation failed with

'client_instrument_descriptor

does not match the instrument'

error, order was not recovered:

{}"

where “{}” is a placeholder for the

order.

Move on to the following order.

QuantReplay REST API

© QuantReplay 38 of 103

Verification Actions if fail

9 If the order is in the “buy_orders”

list, the order’s side is “Buy”.

Output log error message:

“validation failed with 'invalid side

value' error, order was not

recovered: {}”, where “{}” is a

placeholder for the order.

Move on to the following order.

10 If the order is in the “sell_orders”

list, the order’s side is “Sell”,

“SellShort”, or “SellShortExempt”.

Output log error message:

“validation failed with 'invalid side

value' error, order was not

recovered: {}”, where “{}” is a

placeholder for the order.

Move on to the following order.

11 The order’s total_quantity is

greater than or equal to

qtyMinimum.

Output log error message:

“validation failed with 'total quantity

minimal constraint violated' error,

order was not recovered: {}”, where

“{}” is a placeholder for the order.

Move on to the following order.

QuantReplay REST API

© QuantReplay 39 of 103

Verification Actions if fail

12 The order’s total_quantity is less

than or equal to qtyMaximum.

Output log error message:

“validation failed with 'total quantity

maximal constraint violated' error,

order was not recovered: {}”, where

“{}” is a placeholder for the order.

Move on to the following order.

13 The order’s total_quantity is a

multiple of qtyMultiple.

Output log error message:

“validation failed with 'total quantity

multiple constraint violated' error,

order was not recovered: {}”, where

“{}” is a placeholder for the order.

Move on to the following order.

14 The order’s

cum_executed_quantity is greater

than or equal to 0.

Output log error message:

“validation failed with 'cumulative

executed quantity is less than zero'

error, order was not recovered: {}”,

where “{}” is a placeholder for the

order.

Move on to the following order.

QuantReplay REST API

© QuantReplay 40 of 103

Verification Actions if fail

15 The order’s

cum_executed_quantity is a

multiple of qtyMultiple.

Output log error message:

“validation failed with 'cumulative

executed quantity multiple

constraint violated' error, order was

not recovered: {}”, where “{}” is a

placeholder for the order.

Move on to the following order.

16 The order’s

cum_executed_quantity is less

than total_quantity.

Output log error message:

“validation failed with 'cumulative

executed quantity is not less than

total quantity' error, order was not

recovered: {}”, where “{}” is a

placeholder for the order.

Move on to the following order.

17 The order’s order_price is a

multiple of priceTickSize.

Output log error message:

“validation failed with 'order price

tick constraint violated' error, order

was not recovered: {}”, where “{}” is

a placeholder for the order.

Move on to the following order.

QuantReplay REST API

© QuantReplay 41 of 103

Verification Actions if fail

18 The order’s order_status is “New”,

“PartiallyFilled”, or “Modified”.

Output log error message:

“validation failed with 'unsupported

order status value' error, order was

not recovered: {}”, where “{}” is a

placeholder for the order.

Move on to the following order.

19 The order’s time_in_force is

“Day”, “GoodTillDate”, or

“GoodTillCancel”.

Output log error message:

“validation failed with 'time in force

value is invalid' error, order was not

recovered: {}”, where “{}” is a

placeholder for the order.

Move on to the following order.

20 If the order’s time_in_force is

“Day”, “order_time” is not the prior

date.

Output log error message:

“validation failed with 'order

already expired' error, order was

not recovered: {}”, where “{}” is a

placeholder for the order.

Move on to the following order.

QuantReplay REST API

© QuantReplay 42 of 103

Verification Actions if fail

21 If the order’s time_in_force is

“GoodTillDate”, expire_time or

expire_date is not null.

Output log error message:

“validation failed with 'neither

expire date nor expire time

specified' error, order was not

recovered: {}”, where “{}” is a

placeholder for the order.

Move on to the following order.

22 If the order’s time_in_force is

“GoodTillDate”, the order is not

expired.

Output log error message:

“validation failed with 'order

already expired' error, order was

not recovered: {}”, where “{}” is a

placeholder for the order.

Move on to the following order.

23 The last_trade is not null . Output log warning message:

”last trade is empty, nothing to

validate” Remove the information

about the last trade from the

instrument. Then move on to low

and high trade prices.

QuantReplay REST API

© QuantReplay 43 of 103

Verification Actions if fail

24 The last_trade ’s trade_price is

a multiple of priceTickSize.

Output log error message:

“validation failed with 'trade price

tick constraint violated' error, last

trade was not recovered: {}”, where

“{}” is a placeholder for the

last_trade .

Move on to low and high trade

prices.

25 The last_trade ’s

traded_quantity is a multiple of

qtyMultiple.

Output log error message:

“validation failed with 'traded

quantity multiple constraint

violated' error, last trade was not

recovered: {}”, where “{}” is a

placeholder for the last_trade .

Move on to low and high trade

prices.

26 The last_trade ’s

traded_quantity is greater than or

equal to qtyMinimum.

Output log error message:

“validation failed with 'minimal

traded quantity constraint violated'

error, last trade was not recovered:

{}”, where “{}” is a placeholder for

the last_trade .

Move on to low and high trade

prices.

QuantReplay REST API

© QuantReplay 44 of 103

Verification Actions if fail

27 The last_trade ’s

traded_quantity is less than or

equal to qtyMaximum.

Output log error message:

“validation failed with 'maximal

traded quantity constraint violated'

error, last trade was not recovered:

{}”, where “{}” is a placeholder for

the last_trade .

Move on to low and high trade

prices.

28 The info is not null . Output log warning message: ”info is

empty, nothing to validate” Remove

the information about the low and

high prices from the instrument.

Move on to the following

instrument.

29 The info ’s low_price is a multiple

of priceTickSize.

Output log error message:

“validation failed with 'low price tick

constraint violated' error,

instrument info was not recovered:

{}”, where “{}” is a placeholder for

the info .

Move on to the following

instrument.

QuantReplay REST API

© QuantReplay 45 of 103

Verification Actions if fail

30 The info ’s high_price is a

multiple of priceTickSize.

Output log error message:

“validation failed with 'high price

tick constraint violated' error,

instrument info was not recovered:

{}”, where “{}” is a placeholder for

the info .

Move on to the following

instrument.

31 The info ’s low_price is less than

or equal to info ’s high_price .

Output log error message:

“validation failed with 'low price is

less than or equal to high price

constraint violated' error,

instrument info was not recovered:

{}”, where “{}” is a placeholder for

the info . Move on to the following

instrument.

QuantReplay REST API

© QuantReplay 46 of 103

Administrative Settings

General Settings

Manage general settings across all market simulator instances.

Path Type Description

key Text Unique primary key

value Text Value of setting

A list of settings, currently defined in the Market Simulator backend:

Setting Key Meaning

System Display Name DisplayName The name of the

MarketSimulator site,

displayed in the Admin

FE

Price Seed Values

Database Connection

SeedPriceDatabaseConne

ction

Connection string to a

PostgreSQL database to

synchronize price seeds

Price Seed Values Last

Update

SeedPricesLastUpdated Last time when price

seeds were synchronised

Market Simulator REST backend allows a user to retrieve general settings and

update them. There is no possibility to create a new setting or drop an existing

one via the REST API.

Get Settings

Request all market simulator general settings.

Resource URI

QuantReplay REST API

© QuantReplay 47 of 103

GET /api/settings

Example: Request all settings

GET /api/settings HTTP/1.1
Accept: application/json;charset=UTF-8
Host: localhost

Example: Possible response

HTTP/1.1 200 OK
Connection: Close
Content-Length: XXX

{
 "settings" : [
 {
 "key":"DisplayName",
 "value":"SITE NAME"
 },
 {
 "key" : "SeedPriceDatabaseConnection",
 "value" :
"postgresql://user:password@1.2.3.4:1234/simdb"
 },
 {
 "key" : "SeedPricesLastUpdated",
 "value" : "2023-09-07 12:34:55"
 }
]
}

Update Settings

Update Market Simulator general setting values.

Resource URI

PUT /api/settings

Example: Update settings

QuantReplay REST API

© QuantReplay 48 of 103

PUT /api/settings/DisplayName HTTP/1.1
Accept: application/json;charset=UTF-8
Host: localhost

{
 "settings" : [
 {
 "key":"DisplayName",
 "value":"MKTSIMULATOR-DEV"
 },
 {
 "key" : "SeedPriceDatabaseConnection",
 "value" : "postgresql://user:pass@1.2.3.4:1234/simdb"
 }
]
}

Example: Positive reply

HTTP/1.1 200 OK
Connection: Close
Content-Length: XXX

{
 "result" : "General settings updated successfully"
}

Example: Negative reply

HTTP/1.1 400 Bad Request
Connection: Close
Content-Length: XXX

{
 "result" : "Unknown BadKey setting update requested"
}



SeedPricesLastUpdated is considered as read-only to a user. It

can be updated by the MarketSimulator BE itself only, and will

be ignored if included in the settings update request.

QuantReplay REST API

© QuantReplay 49 of 103

Venues

Manage settings for each market simulator venue entity.

Resource Properties

Path Type Description

id Text Unique primary key

name Text Display name

engineType Enum Indicates which type of

engine we want to use

for this venue (Currently

only matching engine is

available)

• Matching - Matching

engine

• Quoting - Quote

engine

supportTifIoc Boolean Whether IOC limit orders

are supported

supportTifFok Boolean Whether FOK limit

orders are supported

supportTifDay Boolean Whether Day limit orders

are supported

includeOwnOrders Boolean Whether to include a

party’s own orders in

published depth

restPort Integer The port that will be used

to send REST API calls

QuantReplay REST API

© QuantReplay 50 of 103

Path Type Description

orderOnStartup Boolean Whether to start

generating orders when

MktSimulator launched

randomPartyCount Integer The amount of different

counter party id’s used by

generator

timeAndSalesEnabled Boolean Whether time and sales

trades should be included

at all in market data

updates

timeAndSalesQuantityEn

abled

Boolean Whether time and sales

trades should include

quantity of the trade

timeAndSalesSideEnable

d

Boolean Whether time and sales

trades should include

side of the trade

timeAndSalesPartiesEnab

led

Boolean Whether time and sales

trades should include

counter parties of the

trade

timeZone Text Local time zone for a

venue (f.e. Europe/Kyiv

or America/Los_Angeles)

For reference:

https://en.wikipedia.org/

wiki/

List_of_tz_database_time_

zones

QuantReplay REST API

© QuantReplay 51 of 103

https://en.wikipedia.org/wiki/List_of_tz_database_time_zones
https://en.wikipedia.org/wiki/List_of_tz_database_time_zones
https://en.wikipedia.org/wiki/List_of_tz_database_time_zones
https://en.wikipedia.org/wiki/List_of_tz_database_time_zones

Path Type Description

cancelOnDisconnect Boolean If a client’s FIX

connection disconnects:

• False (default) - any of

the live resting orders

placed through that

COMPID should be left

in the Order Book.

• True - any of the live

resting orders that

were placed through

that COMPID should

be cancelled, the

rejection messages the

next time that

COMPID reconnects

should be sent.

persistenceEnabled Boolean Whether a matching

engine persisted state

functionality should be

enabled

persistenceFilePath Text A file path to the

persistence file where

matching engine state

should be

stored/recovered

Market Phases Sub-List

QuantReplay REST API

© QuantReplay 52 of 103

Path Type Description

phase Text Enum value from a pre-

defined list of supported

values:

• Open

• Closed

• PreOpen

• PreClose

• Auction

• TradeAtLast

startTime Text The time a phase should

begin set in

corresponding venue

timezone, specified to the

granularity of minutes

endTime Text The time a phase should

end set in corresponding

venue timezone,

specified to the

granularity of minutes

QuantReplay REST API

© QuantReplay 53 of 103

Path Type Description

endTimeRange Integer Time range to choose a

random actual end time

from the specified

endTime for the phase

(this setting is only used

during an Auction phase).

The value indicates the

range after and before

that a random end time

will be chosen. For

example, a value of 5

indicates that a random

end time will be chosen

between 5 minutes

before and 5 minutes

after the specified

endTime.

allowCancels Boolean Whether or not to allow

cancel of orders (this

setting is only used

during a Halt phase).

Get Single Venue

Request a single market simulator venue entity.

Resource URI

GET /api/venues/{venueId}

Example: Request single venue

QuantReplay REST API

© QuantReplay 54 of 103

GET /api/venues/LSE HTTP/1.1
Accept: application/json;charset=UTF-8
Host: localhost

Example: Positive reply

HTTP/1.1 200 OK
Content-Type: application/json;charset=UTF-8
Content-Length: XXX

{
 "id" : "LSE",
 "name" : "London Stock Exchange",
 "engineType" : "Matching",
 "supportTifIoc" : true,
 "supportTifFok" : true,
 "supportTifDay" : true,
 "includeOwnOrders" : true,
 "restPort":9184,
 "orderOnStartup" : false,
 "randomPartyCount" : 10,
 "timeAndSalesEnabled" : true,
 "timeAndSalesQuantityEnabled" : true,
 "timeAndSalesSideEnabled" : true,
 "timeAndSalesPartiesEnabled" : true,
 "timezone" : "America/Los_Angeles",
 "cancelOnDisconnect" : false,
 "persistenceEnabled" : true,
 "persistenceFilePath" : "/path/to/LSE-state.json"
 "phases" : [
 {
 "phase" : "Open",
 "startTime" : "07:39:00",
 "endTime" : "07:39:00",
 "endTimeRange" : 0
 },
 {
 "phase" : "Closed",
 "startTime" : "09:27:00",
 "endTime" : "09:28:00",
 "endTimeRange" : 0
 }
]
}

Example: Negative reply

QuantReplay REST API

© QuantReplay 55 of 103

HTTP/1.1 404 Not Found
Connection: Close
Content-Length: XXX

{
 "result" : "No such venue"
}

Get Multiple Venues

Request all market simulator venue entities.

Resource URI

GET /api/venues

Example: Request all venues

GET /api/venues HTTP/1.1
Accept: application/json;charset=UTF-8
Host: localhost

Example: Possible response

HTTP/1.1 200 OK
Connection: Close
Content-Length: XXX

{
 "venues": [
 {
 "id": "FASTMATCH",
 "name": "FASTMATCH",
 "engineType": "Quoting",
 "supportTifIoc": true,
 "supportTifFok": true,
 "supportTifDay": true,
 "includeOwnOrders": true,
 "restPort": 9182,
 "orderOnStartup": false,
 "randomPartyCount": 10,
 "timeAndSalesEnabled": true,
 "timeAndSalesQuantityEnabled": true,
 "timeAndSalesSideEnabled": true,

QuantReplay REST API

© QuantReplay 56 of 103

 "timeAndSalesPartiesEnabled": true,
 "timezone" : "America/Los_Angeles",
 "cancelOnDisconnect": false,
 "persistenceEnabled" : false,
 "phases": []
 },
 {
 "id" : "LSE",
 "name" : "London Stock Exchange",
 "engineType" : 1,
 "supportTifIoc" : true,
 "supportTifFok" : true,
 "supportTifDay" : true,
 "includeOwnOrders" : true,
 "restPort":9184,
 "orderOnStartup" : false,
 "randomPartyCount" : 10,
 "timeAndSalesEnabled" : true,
 "timeAndSalesQuantityEnabled" : true,
 "timeAndSalesSideEnabled" : true,
 "timeAndSalesPartiesEnabled" : true,
 "timezone" : "America/Los_Angeles",
 "cancelOnDisconnect" : false,
 "persistenceEnabled" : true,
 "persistenceFilePath" : "/path/to/LSE-state.json"
 "phases" : [
 {
 "phase" : "Open",
 "startTime" : "07:39:00",
 "endTime" : "07:39:00",
 "endTimeRange" : 0
 },
 {
 "phase" : "Closed",
 "startTime" : "09:27:00",
 "endTime" : "09:28:00",
 "endTimeRange" : 0
 }
]
 }
]
}

Add Venue

Add new market simulator venue entity.

Resource URI

QuantReplay REST API

© QuantReplay 57 of 103

POST /api/venues

Example: Add venue

POST /api/venues HTTP/1.1
Accept: application/json;charset=UTF-8
Host: localhost
Content-Length: XXX

{
 "id" : "NewExchange",
 "name" : "NewExchange Description",
 "engineType" : "Matching",
 "supportTimeInSales" : false,
 "supportTifIoc" : false,
 "supportTifFok" : false,
 "supportTifDay" : false,
 "includeOwnOrders" : false,
 "restPort" : 9087,
 "orderOnStartup" : true,
 "randomPartyCount" : 1
}

Example: Positive reply

HTTP/1.1 200 OK
Connection: Keep-Alive
Content-Length: XXX

{
 "result" : "Requested insert of the venue - NewExchange"
}

Example: Negative reply

HTTP/1.1 400 Bad Request
Connection: Close
Content-Length: XXX

{
 "result" : "There is already such venue"
}

QuantReplay REST API

© QuantReplay 58 of 103

Update Venue

Update existing market simulator venue entities.

Resource URI

PUT /api/venues/{venueId}

Example: Update Venue

POST /api/venues/NewExchange HTTP/1.1
Accept: application/json;charset=UTF-8
Host: localhost
Content-Length: XXX

{
 "randomOrdersRate" : 12,
 "orderOnStartup" : true
}

Example: Positive reply

HTTP/1.1 200 OK
Connection: Close
Content-Length: XXX

{
 "result" : "Requested update of the venue - NewExchange"
}

Example: Negative reply

HTTP/1.1 404 Not Found
Connection: Close
Content-Length: XXX

{
 "result":"No such venue"
}

QuantReplay REST API

© QuantReplay 59 of 103

Delete Single Venue

It is not allowed to delete venues using the REST API.

Listings

Manage settings for specific listings on each market simulator instance.

Resource Properties

Path Type Description

id Numeric Unique primary key

symbol Text The symbol for this listing, unique to the venue

venueId Text Unique venue key for this listing

QuantReplay REST API

© QuantReplay 60 of 103

Path Type Description

securityTy

pe

Text Security type for this listing, possible values are:

• CS - Common Stock

• FUT - Future

• OPT - Option

• MLEG - Multi-Leg Instrument

• SML - Synthetic Multi-Leg Instrument

• WAR - Warrant

• MF - Mutual Fund

• CORP - Corporate Bond

• CB - Convertible Bond

• REPO - Repurchase Agreement

• INDEX - Index

• CFD - Contract for Difference

• CD - Certificate

• FXSPOT - Forex Spot

• FORWARD - Forward

• FXFWD - Forex Forward

• FXNDF - Forex Non-Deliverable Forward

• FXSWAP - Forex Swap

• FXNDS - Forex Non-Deliverable Swap

priceCurre

ncy

Text Currency of price (for FX, second currency in the pair)

fxBaseCurr

ency

Text For FX only, first currency in the pair, representing

current of quantity

QuantReplay REST API

© QuantReplay 61 of 103

Path Type Description

instrSymb

ol

Text A common symbol used for this listing across different

venues

securityEx

change

Text Exchange name to indicate where a listing is traded

partyId Text Additional value to indicate where a listing is traded

partyRole Text Additional value to indicate where a listing is traded

cusipId Text CUSIP instrument/listing identifier

sedolId Text SEDOL instrument/listing identifier

isinId Text ISIN instrument/listing identifier

ricId Text RIC instrument/listing identifier

exchangeS

ymbolId

Text Custom Exchange listing identifier

bloomberg

SymbolId

Text Bloomberg instrument/listing identifier

qtyMinimu

m

Decimal The minimum allowed order quantity (0 by default,

though all orders require >0 quantity)

qtyMaxim

um

Decimal The maximum allowed order quantity (no limit by

default)

qtyMultipl

e

Decimal Required even multiple of order quantity (any

multiple by default)

priceTickSi

ze

Decimal Required even multiple of order price (any multiple by

default)

QuantReplay REST API

© QuantReplay 62 of 103

Path Type Description

randomQt

yMinimum

Decimal The minimum quantity that can be created by the

Random Order Generator (uses qtyMinimum by

default or if qtyMinimum has a higher value)

Used only for passive orders if

randomAggQtyMinimum and/or

randomAggAmtMinimum have a value.

randomQt

yMaximu

m

Decimal The maximum quantity that can be created by the

Random Order Generator (uses qtyMaximum by

default or if qtyMaximum has a lower value)

Used only for passive orders if

randomAggQtyMaximum and/or

randomAggAmtMaximum have a value.

randomA

mtMinimu

m

Decimal The amount used to derive the minimum quantity that

can be created by the Random Order Generator (uses

randomQtyMinimum by default or if

randomQtyMinimum has a higher value than the

quantity derived from this value)

Used only for passive orders if

randomAggQtyMinimum and/or

randomAggAmtMinimum have a value.

QuantReplay REST API

© QuantReplay 63 of 103

Path Type Description

randomA

mtMaximu

m

Decimal The amount used to derive the maximum quantity that

can be created by the Random Order Generator (uses

randomQtyMaximum by default or if

randomQtyMaximum has a lower value than the

quantity derived from this value)

Used only for passive orders if

randomAggQtyMaximum and/or

randomAggAmtMaximum have a value.

randomAg

gQtyMinim

um

Decimal The minimum quantity that can be created by the

Random Order Generator for aggressive orders (uses

randomQtyMinimum by default)

randomAg

gQtyMaxi

mum

Decimal The maximum quantity that can be created by the

Random Order Generator for aggressive orders (uses

randomQtyMaximum by default)

randomAg

gAmtMini

mum

Decimal The amount used to derive the minimum quantity that

can be created by the Random Order Generator for

aggressive orders (uses randomAggQtyMinimum by

default or if randomAggQtyMinimum has a higher

value than the quantity derived from this value)

randomAg

gAmtMaxi

mum

Decimal The amount used to derive the maximum quantity that

can be created by the Random Order Generator for

aggressive orders (uses randomAggQtyMaximum by

default or if randomAggQtyMaximum has a lower

value than the quantity derived from this value)

randomDe

pthLevels

Integer Maximum count of depth levels that can be created by

Random Order Generator (no limit by default)

randomOr

dersSpread

Decimal The smallest top of book bid/ask price difference for

prices created by the Random Order Generator (uses

priceTickSize by default)

QuantReplay REST API

© QuantReplay 64 of 103

Path Type Description

randomOr

dersRate

Integer The number of order actions (new

order/modification/cancel/wait) per second during

Random Order Generation

randomTic

kRange

Integer Range of price ticks used to calculate prices created by

the Random Order Generator (10 by default)

randomOr

dersEnable

d

Boolean Indicates if the Random Order Generator has to

generate random orders on a listing

enabled Boolean Indicates if the listing is enabled and should be used

by the Market Simulator

Get Single Listing

Request a single market simulator listing entity via id.

Resource URI

GET /api/listings/{id}

Request a single market simulator listing entity via symbol.

Resource URI

GET /api/listings/{symbol}

Example: Request by symbol

GET /api/listings/DE0007664005 HTTP/1.1
Accept: application/json;charset=UTF-8
Host: localhost

Example: Positive reply

HTTP/1.1 200 OK

QuantReplay REST API

© QuantReplay 65 of 103

Connection: Close
Content-Length: XXX

{
 "id" : 1,
 "symbol" : "DE0007664005",
 "venueId" : "XETRA",
 "securityType" : "CS",
 "priceCurrency" : "EUR",
 "fxBaseCurrency" : "",
 "instrSymbol" : "DE0007664005",
 "securityExchange" : "XETR",
 "partyId" : "",
 "partyRole" : "",
 "cusipId" : "",
 "sedolId" : "",
 "isinId" : "DE0007664005",
 "ricId" : "",
 "exchangeSymbolId" : "",
 "bloombergSymbolId" : "",
 "qtyMinimum" : 1.0,
 "qtyMaximum" : 100000.0,
 "qtyMultiple" : 1.0,
 "priceTickSize" : 0.001,
 "enabled" : true,
 "randomQtyMinimum" : 1.0,
 "randomQtyMaximum" : 700.0,
 "randomAmtMinimum" : 0.0,
 "randomAmtMaximum" : 0.0,
 "randomDepthLevels" : 7,
 "randomOrdersSpread" : 0.01,
 "randomOrdersRate" : 7,
 "randomTickRange" : 100,
 "randomOrdersEnabled" : true,
 "randomAggQtyMinimum" : 2.0,
 "randomAggQtyMaximum" : 200.0,
 "randomAggAmtMinimum" : 1000.0,
 "randomAggAmtMaximum" : 3000.0
}

Example: Negative reply

HTTP/1.1 404 Not Found
Connection: Close
Content-Length: XXX

{
 "result" : "No such listing"
}

QuantReplay REST API

© QuantReplay 66 of 103



Market Simulator selects a listing by both symbol and VenueID

implicitly when a GET request is received with a symbol. The

VenueID value is taken from the simulator instance

configuration.

Get Multiple Listings

Request all market simulator listings entities.

Resource URI

GET /api/listings/

Example: Request multiple listings

GET /api/listings HTTP/1.1
Accept: application/json;charset=UTF-8
Host: localhost

Example: Possible reply

HTTP/1.1 200 OK
Content-Type: application/json;charset=UTF-8
Content-Length: XXX

{
 "listings": [
 {
 "id": 1,
 "symbol": "DE0007664005",
 "venueId": "XETRA",
 "securityType": "CS",
 "priceCurrency": "EUR",
 "fxBaseCurrency": "",
 "instrSymbol": "DE0007664005",
 "securityExchange": "XETR",
 "partyId": "",
 "partyRole": "",
 "cusipId": "",
 "sedolId": "",
 "isinId": "DE0007664005",
 "ricId": "",

QuantReplay REST API

© QuantReplay 67 of 103

 "exchangeSymbolId": "",
 "bloombergSymbolId": "",
 "qtyMinimum": 1,
 "qtyMaximum": 1000000,
 "qtyMultiple": 1,
 "priceTickSize": 0.001,
 "randomQtyMinimum": 1,
 "randomQtyMaximum": 1000,
 "randomAmtMinimum": 0,
 "randomAmtMaximum": 0,
 "randomDepthLevels": 10,
 "randomOrdersSpread": 1,
 "randomOrdersRate": 1,
 "randomTickRange": 10,
 "randomAggQtyMinimum" : 2.0,
 "randomAggQtyMaximum" : 200.0,
 "randomAggAmtMinimum" : 1000.0,
 "randomAggAmtMaximum" : 3000.0
 },
 {
 "id": 3,
 "symbol": "EUR/USD",
 "venueId": "FASTMATCH",
 "securityType": "FXSPOT",
 "priceCurrency": "USD",
 "fxBaseCurrency": "EUR",
 "instrSymbol": "EUR/USD",
 "securityExchange": "FASTMATCH",
 "partyId": "",
 "partyRole": "",
 "cusipId": "",
 "sedolId": "",
 "isinId": "",
 "ricId": "",
 "exchangeSymbolId": "",
 "bloombergSymbolId": "",
 "qtyMinimum": 1,
 "qtyMaximum": 1.0E8,
 "qtyMultiple": 1,
 "priceTickSize": 0.001,
 "randomQtyMinimum": 1,
 "randomQtyMaximum": 1.0E7,
 "randomAmtMinimum": 0,
 "randomAmtMaximum": 0,
 "randomDepthLevels": 3,
 "randomOrdersSpread": 1.0E-4,
 "randomOrdersRate": 1,
 "randomTickRange": 10,
 "randomAggQtyMinimum" : 2.0,
 "randomAggQtyMaximum" : 200.0,
 "randomAggAmtMinimum" : 1000.0,

QuantReplay REST API

© QuantReplay 68 of 103

 "randomAggAmtMaximum" : 3000.0
 }
]
}

Add Listing

Add a new market simulator listing entity.

Resource URI

POST /api/listings/

Example: Request to add a new listing

POST /api/listings HTTP/1.1
Accept: application/json;charset=UTF-8
Host: localhost

{
 "symbol" : "AAPL",
 "venueId" : "XETRA",
 "instrSymbol" : "AAPL",
 "securityType" : "CS",
 "qtyMinimum" : 1,
 "qtyMaximum" : 100000,
 "randomQtyMultiple" : 1,
 "randomQtyMinimum" : 200,
 "randomQtyMaximum" : 1100,
 "randomAmtMinimum" : 100,
 "randomAmtMaximum" : 2000,
 "randomOrdersEnabled" : false,
 "enabled" : false
}

Example: Positive reply

HTTP/1.1 201 Created
Connection: Close
Content-Length: XXX

{
 "result" : "Requested insert of the listing - AAPL"
}

QuantReplay REST API

© QuantReplay 69 of 103

Example: Negative reply

HTTP/1.1 400 Bad Request
Connection: Close
Content-Length: XXX

{
 "result" : "There is already such listing"
}

Update Listing

Update existing market simulator listing entity via ID.

Resource URI

PUT /api/listings/{listingId}

Example: Request to update a listing

PUT /api/listings/AAPL HTTP/1.1
Accept: application/json;charset=UTF-8
Host: localhost

{
 "enabled" : true,
 "randomOrdersEnabled" : true
}

Example: Positive reply

HTTP/1.1 200 OK
Connection: Close
Content-Length: XXX

{
 "result" : "Requested update of the listing - AAPL"
}

Example: Negative reply

HTTP/1.1 404 Not Found

QuantReplay REST API

© QuantReplay 70 of 103

Connection: Close
Content-Length: XXX

{
 "result" : "No such listing"
}

Update existing market simulator listing entities via Symbol.

Resource URI

PUT /api/listings/{symbol}

Example: Request to update a new listing

PUT /api/listings/AAPL HTTP/1.1
Accept: application/json;charset=UTF-8
Host: localhost

{
 "priceTickSize" : 0.001,
 "qtyMultiple" : 2
}

Example: Positive reply

HTTP/1.1 200 OK
Connection: Close
Content-Length: XXX

{
 "result" : "Requested update of the listing - AAPL"
}

Example: Negative reply

HTTP/1.1 404 Not Found
Connection: Close
Content-Length: XXX

{
 "result" : "No such listing"
}

QuantReplay REST API

© QuantReplay 71 of 103



Market Simulator updates a listing by both symbol and VenueID

implicitly when a PUT request is received with a symbol. The

VenueID value is taken from the simulator instance

configuration.

Data Sources

Manage settings for specific data sources on each market simulator instance.

See this section for more information about playback of data from data

sources.

Resource Properties

Path Type Description

id Numeric Unique primary key

enabled Boolean Whether or not this data

source is enabled or

disabled

name Text Name for this data

source, unique to the

venue

venueId Text Unique venue key for a

data source

connection Text Connection string for the

datasource (eg a file path

for CSV files, or a

database connection

string for database

connections).

QuantReplay REST API

© QuantReplay 72 of 103

Path Type Description

format Text Indicates the type of

historic data storage.

Supported values:

• CSV - comma-

separated value file

• PSQL - PostgreSQL (or

TimescaleDB)

database

type Text Indicates the data source

format. Supported

values:

• OrderBook - L1/L2

market data format

repeat Boolean Whether to start reading

from the beginning of the

data source when the end

is reached (supported

only for files and

databases)

textDelimeter Char Delimiter used to

separate values ("," by

default if not specified)

(supported only for CSV

format)

textHeaderRow Integer 1-based row index of

where header row is

located (0 indicates no

header row) (supported

only for CSV format)

QuantReplay REST API

© QuantReplay 73 of 103

Path Type Description

textDataRow Integer 1-based row index of

where the first row of

data is located. Cannot be

0, and must be greater

than textHeaderRow, if

present (supported only

for CSV format)

tableName Text Name of table (supported

only for databases)

maxDepthLevels Integer Maximum depth levels to

read from the data

source. 0 or unspecified

indicates to read all

levels.

Column Mapping Sub-List

Path Type Description

dataSource

Id

Integer An identifier of the data source record which has a

column mapping config. Users may omit to send this

value in the requests.

QuantReplay REST API

© QuantReplay 74 of 103

Path Type Description

columnFro

m

Enum Internal simulator field for mapping data. Supported

values (part 1, continued on next page):

• ReceivedTimeStamp - timestamp market data

update was received (required, date/time precision

to the ms, e.g. 2019-03-07 15:00:00.243)

• MessageTimeStamp - timestamp from original sent

market data message (required, date/time precision

to the ms, e.g. 2019-03-07 15:00:00.115)

• Instrument - instrument symbol matching one of

the listing’s Symbol for this venue (required, string)

• BidParty - bid level counter party (optional, string,

e.g. CP1)

• BidQuantity - bid level quantity (optional, float, e.g.

10)

• BidPrice - bid level price (optional, float, e.g. 133.5)

• AskPrice - ask level price (optional, float, e.g.

134.85)

• AskQuantity - ask level quantity (optional, float, e.g.

15)

• AskParty - ask level counter party (optional, string,

e.g. CP2)

QuantReplay REST API

© QuantReplay 75 of 103

Path Type Description

columnFro

m

Enum Internal simulator field for mapping data. Supported

values (part 2, continued from previous page):

Any bid or ask level missing a price or quantity value

is considered to be empty and removed from the state

of the matching engine. If the party value for a bid or

ask level is missing, a default value of “CP#” is used,

where # is the index for each level (e.g. level 1 would

use CP1, etc).

If the datasource contains several levels, a 1-based

level index must be appended to each of column

names BidParty, BidQuantity, BidPrice, AskPrice,

AskQuantity, AskParty. For example, BidParty1,

BidParty2 etc.

The # character can also be used with these fields to

indicate reading from whatever index levels are

specified in the file or database itself. For example,

BidParty#, BidQuantity# etc.

columnTo Text External data source column name for mapping data.

If the datasource contains several levels, the #

character can be used as a placeholder for the level

number. For instance, bidparty# instead of

bidparty1, bidparty2, etc.

In the case of CSV format, a 1-based column number

can be indicated to specify the position of columns

instead of the name of columns. To use this method,

textHeaderRow for the datasource must be 0.

QuantReplay REST API

© QuantReplay 76 of 103

Get Single Data Source

Request a single market simulator data source entity.

Resource URI

GET /api/datasources/{id}

Example: Request single data source

GET /api/datasource/1 HTTP/1.1
Accept: application/json;charset=UTF-8
Host: localhost

Example: Positive reply

HTTP/1.1 200 OK
Content-Type: application/json;charset=UTF-8
Content-Length: XXX

{
 "id" : 1,
 "enabled" : false,
 "name" : "LSE1",
 "venueId" : "LSE",
 "connection" : "lse1.csv",
 "format" : "CSV",
 "type" : "OrderBook",
 "repeat" : false,
 "textDelimeter" : "|",
 "textHeaderRow" : 0,
 "textDataRow" : 1,
 "maxDepthLevels": 3,
 "columnMapping": [
 {
 "dataSourceId" : 1,
 "columnFrom" : "ReceivedTimeStamp",
 "columnTo" : "ActionTime"
 },
 {
 "dataSourceId" : 1,
 "columnFrom" : "MessageTimeStamp",
 "columnTo" : "2"
 },
 {

QuantReplay REST API

© QuantReplay 77 of 103

 "dataSourceId" : 1,
 "columnFrom" : "BidPrice3",
 "columnTo" : "bid_price_three"
 }
]
}

Example: Negative reply

HTTP/1.1 404 Not Found
Connection: Close
Content-Length: XXX

{
 "result" : "No such data source"
}

Get Multiple Data Sources

Request all market simulator data sources entities.

Resource URI

GET /api/datasources

Example: Get all data sources

GET /api/datasources HTTP/1.1
Accept: application/json;charset=UTF-8
Host: localhost

Example: Possible reply

HTTP/1.1 200 OK
Connection: Close
Content-Length: XXX

{
 "dataSources": [
 {
 "id" : 1,
 "enabled" : true,
 "name" : "XETRA-3",

QuantReplay REST API

© QuantReplay 78 of 103

 "venueId" : "XETRA",
 "connection" :
"postgresql://develop:develop@172.16.238.3:5432/simhistoricaldb",
 "format" : "PSQL",
 "type" : "OrderBook",
 "repeat" : true,
 "tableName" : "historical_data",
 "columnMapping": [
 {
 "dataSourceId" : 1,
 "columnFrom" : "ReceivedTimeStamp",
 "columnTo" : "ActionTime"
 },
 {
 "dataSourceId" : 1,
 "columnFrom" : "MessageTimeStamp",
 "columnTo" : "2"
 },
]
 },
 {
 "id" : 2,
 "enabled" : false,
 "name" : "XETRA-CONT-1",
 "venueId" : "XETRA",
 "connection" : "/rodata/XETRA-trimmed.csv",
 "format" : "CSV",
 "type" : "OrderBook",
 "repeat" : true,
 "textDelimeter" : ";",
 "textHeaderRow" : 1,
 "textDataRow" : 2,
 "columnMapping" : []
 }
]
}

Add Data Sources

Add a new market simulator data source entity.

Resource URI

POST /api/datasources

Example: Request to add a new data source entity

QuantReplay REST API

© QuantReplay 79 of 103

POST /api/datasources HTTP/1.1
Accept: application/json;charset=UTF-8
Host: localhost

{
 "enabled" : false,
 "name" : "XETRA-NEW",
 "venueId" : "XETRA",
 "connection" : "/rodata/XETRA-new.csv",
 "format" : "CSV",
 "type" : "OrderBook",
 "repeat" : true,
 "textDelimiter" : ",",
 "textHeaderRow" : 0,
 "textDataRow" : 100,
 "columnMapping": [
 {
 "columnFrom" : "ReceivedTimeStamp",
 "columnTo" : "ActionTime"
 }
]
}

Example: Positive reply

HTTP/1.1 201 Created
Connection: Close
Content-Length: XXX

{
 "result" : "Requested insert of the data source - XETRA-NEW"
}

Example: Negative reply

HTTP/1.1 400 Bad Request
Connection: Close
Content-Length: XXX

{
 "result" : "There is already such data source"
}

QuantReplay REST API

© QuantReplay 80 of 103

Update Data Sources

Update existing market simulator data source entities.

Resource URI

PUT /api/datasources/{id}

Example: Request to update a data source entity

PUT /api/datasources/1 HTTP/1.1
Accept: application/json;charset=UTF-8
Host: localhost

{
 "enabled" : true,
 "venueId" : "XETRA",
 "repeat" : false
}

Example: Positive reply

HTTP/1.1 200 OK
Connection: Close
Content-Length: XXX

{
 "result" : "Requested update of the data source with identifier
- 1"
}

Example: Negative reply

HTTP/1.1 404 Not Found
Connection: Close
Content-Length: XXX

{
 "result" : "No such data source"
}

QuantReplay REST API

© QuantReplay 81 of 103

Price Seeds

Manage values for price seeds on which will be used to generate random

orders on market simulator.

Resource Properties

Path Type Description

id Integer A unique price seed record identifier

symbol Text Symbol for this instrument

QuantReplay REST API

© QuantReplay 82 of 103

Path Type Description

securityType Text Security type for a target instrument:

• CS - Common Stock

• FUT - Future

• OPT - Option

• MLEG - Multi-Leg Instrument

• SML - Synthetic Multi-Leg

Instrument

• WAR - Warrant

• MF - Mutual Fund

• CORP - Corporate Bond

• CB - Convertible Bond

• REPO - Repurchase Agreement

• INDEX - Index

• CFD - Contract for Difference

• CD - Certificate

• FXSPOT - Forex Spot

• FORWARD - Forward

• FXFWD - Forex Forward

• FXNDF - Forex Non-Deliverable

Forward

• FXSWAP - Forex Swap

• FXNDS - Forex Non-Deliverable

Swap

QuantReplay REST API

© QuantReplay 83 of 103

Path Type Description

priceCurrency Text Currency of price (for FX, second

currency in the pair), using ISO-4217 3-

char currency codes

securityId Text Security ID for this listing

securityIdSource Text Type of security ID entered, can be

null (i.e. for FX where we don’t require

a security ID)

instrumentSymbol Text Common symbol used for this listing

across different venues

midPrice Decimal Last known mid price

bidPrice Decimal Last known bid price

offerPrice Decimal Last known offer price

lastUpdate DateTime Date and time in UTC of last time

instrument price was last successfully

refreshed

Get Single Price Seed

Request a single market simulator price seed entity.

Resource URI

GET /api/priceseeds/{id}

Example: Get a single price seed

GET /api/priceseeds/1 HTTP/1.1
Accept: application/json;charset=UTF-8
Host: localhost

Example: Positive reply

QuantReplay REST API

© QuantReplay 84 of 103

HTTP/1.1 200 OK
Content-Type: application/json;charset=UTF-8
Content-Length: XXX

{
 "id" : 1,
 "symbol" : "PAR_ST",
 "securityType" : "CS",
 "priceCurrency" : "USD",
 "securityId" : "SEDOL",
 "securityIdSource" : "SEDOL",
 "instrumentSymbol" : "PAR",
 "midPrice" : 10,
 "bidPrice" : 9,
 "offerPrice" : 11,
 "lastUpdate" : "2015-09-08T15:32:09"
}

Example: Negative reply

HTTP/1.1 404 Not Found
Connection: Close
Content-Length: XXX

{
 "result" : "Can not resolve a single PriceSeed by a given key"
}

Get Multiple Price Seeds

Request all market simulator price seed entities.

Resource URI

GET /api/priceseeds

Example: Get all price seeds

GET /api/priceseeds HTTP/1.1
Accept: application/json;charset=UTF-8
Host: localhost

Example: Possible reply

QuantReplay REST API

© QuantReplay 85 of 103

HTTP/1.1 200 OK
Connection: Close
Content-Length: XXX

{
 "priceSeeds" : [
 {
 "id" : 2,
 "symbol" : "DE0007664005",
 "securityType" : "CS",
 "priceCurrency" : "EUR",
 "securityId" : "DE0007664005",
 "securityIdSource" : "ISI",
 "instrumentSymbol" : "DE0007664005",
 "midPrice" : 140.0,
 "bidPrice" : 135.0,
 "offerPrice" : 145.0,
 "lastUpdate" : "2023-May-10 12:47:08.252739"
 },
 {
 "id" : 3,
 "symbol" : "EUR/USD",
 "securityType" : "FXSPOT",
 "priceCurrency" : "USD",
 "securityId" : "",
 "securityIdSource" : "",
 "instrumentSymbol" : "EUR/USD",
 "midPrice" : 31.345,
 "bidPrice" : 30.435,
 "offerPrice" : 33.435,
 "lastUpdate" : "2023-May-10 12:47:08.252739"
 }
]
}

Add Price Seeds

Add new market simulator price seed entity.

Resource URI

POST /api/priceseeds

Example: Add new price seed

POST /api/priceseeds HTTP/1.1

QuantReplay REST API

© QuantReplay 86 of 103

Accept: application/json;charset=UTF-8
Host: localhost

{
 "symbol" : "AAPL",
 "securityType" : "CS",
 "priceCurrency" : "USD",
 "instrumentSymbol" : "AAPL",
 "midPrice" : 120.5,
 "bidPrice" : 110.5,
 "offerPrice" : 130.5
}

Example: Positive reply

HTTP/1.1 201 Created
Connection: Close
Content-Length: XXX

{
 "result" : "Successfully added a new price seed"
}

Example: Negative reply

HTTP/1.1 400 Bad Request
Connection: Close
Content-Length: XXX

{
 "result" : "Requested operation violates data integrity
constraints"
}

Update Price Seeds

Update existing market simulator price seed entities.

Resource URI

PUT /api/priceseeds/{id}

Example: Update price seed

QuantReplay REST API

© QuantReplay 87 of 103

PUT /api/priceseeds/4 HTTP/1.1
Accept: application/json;charset=UTF-8
Host: localhost

{
 "midPrice" : 120.5,
 "offerPrice" : 123.5
}

Example: Positive reply

HTTP/1.1 200 OK
Connection: Close
Content-Length: XXX

{
 "result" : "Successfully updated the price seed with 4
identifier"
}

Example: Negative reply

HTTP/1.1 404 Not Found
Connection: Close
Content-Length: XXX

{
 "result" : "Can not resolve a single PriceSeed by a given key"
}

Delete Price Seeds

Delete market simulator price seeds entity.

Resource URI

DELETE /api/priceseeds/{id}

Example: Delete price seed

DELETE /api/priceseeds/4 HTTP/1.1
Accept: application/json;charset=UTF-8

QuantReplay REST API

© QuantReplay 88 of 103

Host: localhost

Example: Positive reply

HTTP/1.1 204 No Content
Connection: Close
Content-Length: 0

Example: Negative reply

HTTP/1.1 404 Not Found
Connection: Close
Content-Length: XXX

{
 "result" : "Can not resolve a single PriceSeed by a given key"
}

Sync Price Seeds

Retrieve and update price seeds from an external database

Resource URI

PUT /api/syncpriceseeds

Example: Sync price seeds

PUT /api/syncpriceseeds HTTP/1.1
Accept: application/json;charset=UTF-8
Host: localhost

Example: Possible reply

HTTP/1.1 200 OK
Connection: Close
Content-Length: 45

{
 "result" : "Price seeds successfully synchronized"
}

QuantReplay REST API

© QuantReplay 89 of 103

Administrative Commands

System Status

Query current live status of system.

Resource Properties

Path Type Description

id Text Venue short name

name Text Venue full name

startTime Text Time when the instance

started

version Text Version of MktSimulator

Get System Status

Request system status.

Resource URI

GET /api/status

Example: Request system status

GET /api/status HTTP/1.1
Accept: application/json;charset=UTF-8
Host: localhost

Example: Possible reply

HTTP/1.1 200 OK
Content-Type: application/json;charset=UTF-8
Content-Length: XXX

{
 "id" : "LSE",

QuantReplay REST API

© QuantReplay 90 of 103

 "name": "London Stock Exchange",
 "startTime":"2022-Feb-03 12:16:50"
 "version" : "99.116.15829062-734713bc (28/02/2020 17:40:18)"
}

Venue Status

Manage current live status of each market simulator venue instance.

Resource Properties

Path Type Description

id Text Venue short name

name Text Venue full name

startTime Text Time when the instance

started

version Text Version of MktSimulator

responseCode Integer HTTP code received in

response to venue status

request

Get Single Venue Status

Request a single market simulator venue entity status.

Resource URI

GET /api/venuestatus/{venueId}

Example: Request single venue status

GET /api/venuestatus/LSE HTTP/1.1
Accept: application/json;charset=UTF-8
Host: localhost

Example: Possible reply

QuantReplay REST API

© QuantReplay 91 of 103

HTTP/1.1 200 OK
Content-Type: application/json;charset=UTF-8
Content-Length: XXX

{
 "id" : "LSE",
 "name": "London Stock Exchange",
 "startTime":"2022-Feb-03 12:16:50"
 "version" : "99.116.15829062-734713bc (28/02/2020 17:40:18)"
 "statusCode" : 200
}

Get Multiple Venue Status

Request all market simulator venue entity status.

Resource URI

GET /api/venuestatus

Example: Request single venue status

GET /api/venuestatus HTTP/1.1
Accept: application/json;charset=UTF-8
Host: localhost

Example: Possible reply

HTTP/1.1 200 OK
Content-Type: application/json;charset=UTF-8
Content-Length: XXX

{
 "venuestatus": [
 {
 "id":"FASTMATCH",
 "name":"FASTMATCH",
 "startTime":"2023-Feb-09 09:34:42.216182",
 "version":"develop.3.1675934598-87a7b61c(2023-02-09
11:23:18 +0200)",
 "statusCode":200
 },
 {
 "id":"XETRA",

QuantReplay REST API

© QuantReplay 92 of 103

 "name":"XETRA",
 "startTime":"2023-Feb-09 09:34:42.216182",
 "version":"develop.3.1675934598-87a7b61c(2023-02-09
11:23:18 +0200)",
 "statusCode":200
 },
 {
 "id":"BSE",
 "name":"BSE",
 "startTime":"2023-Aug-07 11:28:19.623110",
 "version":"3.1691404393_9ee00fc9(2023-08-07 13:33:13
+0300)",
 "statusCode":503
 }
]
}

Order Generation

Start/Stop Order Generation

Start or stop generation of random orders and historical data for instance

indicated by VenueID

Resource URI

PUT /api/[genstart|genstop]/{venueId}

Example: Request to start generation for XETRA instance

PUT /api/genstart/XETRA HTTP/1.1
Accept: application/json;charset=UTF-8
Host: localhost

Example: Possible reply

HTTP/1.1 200 OK
Content-Type: application/json;charset=UTF-8
Content-Length: XXX

{
 "result" : "Random orders generator started successfully"

QuantReplay REST API

© QuantReplay 93 of 103

}

Example: Request to stop generation for XETRA instance

PUT /api/genstop/XETRA HTTP/1.1
Accept: application/json;charset=UTF-8
Host: localhost

Example: Possible reply

HTTP/1.1 200 OK
Content-Type: application/json;charset=UTF-8
Content-Length: XXX

{
 "result" : "Random orders generator stopped successfully"
}

Status of Order Generation

Get whether generation of random orders and historical data for instance

indicated by VenueID is enabled

Resource URI

GET /api/genstatus/{venueId}

Example: Request for status of generation for LSE instance

GET /api/genstatus/LSE HTTP/1.1
Accept: application/json;charset=UTF-8
Host: localhost

Example: Reply in case the generation is running

HTTP/1.1 200 OK
Content-Type: application/json;charset=UTF-8
Content-Length: XXX

{
 "result" : "Running"

QuantReplay REST API

© QuantReplay 94 of 103

}

Example: Reply in case the generation is NOT running

HTTP/1.1 200 OK
Content-Type: application/json;charset=UTF-8
Content-Length: XXX

{
 "result" : "NotRunning"
}

Example: Reply in case a venue does not exist

HTTP/1.1 502 Bad Gateway
Content-Type: application/json;charset=UTF-8
Content-Length: XXX

{
 "result" : "Could not resolve destination instance with AAAAA
identifier"
}

Market Phase Halt

See this section for more information about market phases.

Halt Market Phase

Halt current market phase.

Resource Properties

QuantReplay REST API

© QuantReplay 95 of 103

Path Type Description

allowCancels Boolean Defines whether order cancellation by

OrderCancelRequest (35=F) is allowed during

the Open Halted phase.

• true - OrderCancelRequest (35=F) can be

processed. If the order is cancelled, the

market simulator’s response is

ExecutionReport (35=8), in which OrdStatus

is Canceled (39=4).

• false - OrderCancelRequest (35=F) will be

rejected - orders cannot be cancelled. The

market simulator’s response is

OrderCancelReject (35=9), in which

OrdStatus is Rejected (39=8).

Resource URI

PUT /api/halt/{venueId}

Example: Halt market for LSE instance

PUT /api/halt/LSE HTTP/1.1
Accept: application/json;charset=UTF-8
Host: localhost

{
 "allowCancels": false
}

Example: Positive reply

HTTP/1.1 200 OK
Content-Type: application/json;charset=UTF-8
Content-Length: XXX

{
 "result" : "Market successfully halted"

QuantReplay REST API

© QuantReplay 96 of 103

}

Example: Reply if the phase is already halted

HTTP/1.1 409 Conflict
Connection: Close
Content-Length: XXX

{
 "result" : "The market is already halted."
}

Example: Reply if there is no active phase

HTTP/1.1 404 Not Found
Connection: Close
Content-Length: XXX

{
 "result" : "There is no phase to halt."
}

Example: If the current phase cannot be halted

HTTP/1.1 409 Conflict
Connection: Close
Content-Length: XXX

{
 "result" : "Unable to halt the phase."
}

Resume Market Phase

Resume the phase that was halted by a halt request.

Resource URI

PUT /api/resume/{venueId}

Example: Resume market for LSE instance

QuantReplay REST API

© QuantReplay 97 of 103

PUT /api/resume/LSE HTTP/1.1
Accept: application/json;charset=UTF-8
Host: localhost

Example: Positive reply

HTTP/1.1 200 OK
Content-Type: application/json;charset=UTF-8
Content-Length: XXX

{
 "result" : "The market was successfully resumed."
}

Example: Reply if the phase is not currently halted

HTTP/1.1 409 Conflict
Content-Type: application/json;charset=UTF-8
Content-Length: XXX

{
 "result" : "There is no halt request to terminate."
}

Persisted State

Store Market State for Single Venue

Store current state of active traded listings for current venue to a persisted

state file path configured for the venue.

Status Code Response

201 CREATED
{
 "result": "Matching engine state has been
successfully persisted."
}

QuantReplay REST API

© QuantReplay 98 of 103

Status Code Response

403 FORBIDDEN
{
 "result": "Persistence is disabled."
}

409 CONFLICT
{
 "result": "The persistence file path is
empty."
}

409 CONFLICT
{
 "result": "The persistence file path is
unreachable."
}

409 CONFLICT
{
 "result": "An error occurs when opening the
persistence file."
}

409 CONFLICT
{
 "result": "An error occurs when writing to
the persistence file."
}

Resource URI

POST /api/store

Example: Store state for current venue

POST /api/store HTTP/1.1
Accept: application/json;charset=UTF-8
Host: localhost

Example: Positive reply

QuantReplay REST API

© QuantReplay 99 of 103

HTTP/1.1 201 Created
Content-Type: application/json;charset=UTF-8
Content-Length: XXX

{
 "result": "Matching engine state has been successfully
persisted."
}

Store current state of active traded listings for a specific venue to a persisted

state file path configured for the venue.

Resource URI

POST /api/store/{venueId}

Example: Store state for venue LSE

POST /api/store/LSE HTTP/1.1
Accept: application/json;charset=UTF-8
Host: localhost

Example: Positive reply

HTTP/1.1 201 Created
Content-Type: application/json;charset=UTF-8
Content-Length: XXX

{
 "result": "Matching engine state has been successfully
persisted."
}

Recover Market State for Single Venue

Recover state of active traded listings for current venue from a persisted state

file configured for the venue.

QuantReplay REST API

© QuantReplay 100 of 103

Status Code Response

201 CREATED
{
 "result": "Matching engine state has been
successfully recovered."
}

403 FORBIDDEN
{
 "result": "Persistence is disabled."
}

409 CONFLICT
{
 "result": "The persistence file path is
empty."
}

409 CONFLICT
{
 "result": "The persistence file path is
unreachable."
}

409 CONFLICT
{
 "result": "An error occurs when opening the
persistence file."
}

409 CONFLICT
{
 "result": "The persistence file is
malformed."
}

or

{
 "result": "The persistence file is
malformed: {}"
}

where “{}” is a placeholder for the details of the error.

QuantReplay REST API

© QuantReplay 101 of 103

Resource URI

POST /api/recover

Example: Recover state for current venue

POST /api/recover HTTP/1.1
Accept: application/json;charset=UTF-8
Host: localhost

Example: Positive reply

HTTP/1.1 201 Created
Content-Type: application/json;charset=UTF-8
Content-Length: XXX

{
 "result" : "Matching engine state has been successfully
recovered"
}

Recover state of active traded listings for a specific venue from a persisted state

file configured for the venue.

Resource URI

POST /api/recover/{venueId}

Example: Recover state for venue LSE

POST /api/recover/LSE HTTP/1.1
Accept: application/json;charset=UTF-8
Host: localhost

Example: Positive reply

HTTP/1.1 201 Created
Content-Type: application/json;charset=UTF-8
Content-Length: XXX

{

QuantReplay REST API

© QuantReplay 102 of 103

 "result" : "Matching engine state has been successfully
recovered"
}

QuantReplay REST API

© QuantReplay 103 of 103

	QuantReplay REST API
	Table of Contents
	Introduction
	Scope

	General
	REST Logic
	REST Requests
	REST Usage
	Base URL
	Request Methods
	HTTP GET
	HTTP POST
	HTTP PUT
	HTTP DELETE

	Data Format
	Request Headers
	Request Body
	Response Body
	Strings
	Numbers
	Date/Time

	Random Order Generation
	Distribution of Actions
	Distribution of Price
	Distribution of Quantity
	Special Market Events

	Data Source Playback
	Format Specific Configuration
	CSV Files
	Databases

	Basic Single Level Order Book
	Multiple Level Order Book

	Market Phases
	Open Phase
	Closed Phase
	Phase Halt

	Persisted State
	File Format
	Data verification

	Administrative Settings
	General Settings
	Get Settings
	Update Settings

	Venues
	Market Phases Sub-List
	Get Single Venue
	Get Multiple Venues
	Add Venue
	Update Venue
	Delete Single Venue

	Listings
	Get Single Listing
	Get Multiple Listings
	Add Listing
	Update Listing

	Data Sources
	Column Mapping Sub-List
	Get Single Data Source
	Get Multiple Data Sources
	Add Data Sources
	Update Data Sources

	Price Seeds
	Get Single Price Seed
	Get Multiple Price Seeds
	Add Price Seeds
	Update Price Seeds
	Delete Price Seeds
	Sync Price Seeds

	Administrative Commands
	System Status
	Get System Status

	Venue Status
	Get Single Venue Status
	Get Multiple Venue Status

	Order Generation
	Start/Stop Order Generation
	Status of Order Generation

	Market Phase Halt
	Halt Market Phase
	Resume Market Phase

	Persisted State
	Store Market State for Single Venue
	Recover Market State for Single Venue

